0=-16t^2+160+3

Simple and best practice solution for 0=-16t^2+160+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+160+3 equation:



0=-16t^2+160+3
We move all terms to the left:
0-(-16t^2+160+3)=0
We add all the numbers together, and all the variables
-(-16t^2+160+3)=0
We get rid of parentheses
16t^2-160-3=0
We add all the numbers together, and all the variables
16t^2-163=0
a = 16; b = 0; c = -163;
Δ = b2-4ac
Δ = 02-4·16·(-163)
Δ = 10432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10432}=\sqrt{64*163}=\sqrt{64}*\sqrt{163}=8\sqrt{163}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{163}}{2*16}=\frac{0-8\sqrt{163}}{32} =-\frac{8\sqrt{163}}{32} =-\frac{\sqrt{163}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{163}}{2*16}=\frac{0+8\sqrt{163}}{32} =\frac{8\sqrt{163}}{32} =\frac{\sqrt{163}}{4} $

See similar equations:

| 3d–23d2÷5=0 | | 133=x+140 | | -4(t+74)=-28 | | 5a+3-3a=31 | | 18x+12=110 | | -6(y-1)=-5(y+2) | | 16=−5+z/4 | | 2x-4=2x-(-2) | | 9x-2=5(2x-2) | | -258=-95x | | 2m+10=36 | | 0=3+24.5t-4.9t^2 | | 7x+8=2(9x+1) | | n=2n-13 | | 2a^2=27-15a | | -y−10=-2y | | 1+(1x)=x | | 0.002+5y=0.3 | | 5(x+5)-6=20-3(2x-7) | | 1+-2n=-1 | | 1+-3b=-2 | | x-68=-94 | | k/4+ 11=15 | | k4+ 11=15 | | 5x+26=9x-1 | | 2+t+6=12 | | 2+|t+6|=12 | | 2/5x+11/5=-4x+11 | | d3− 14=-12 | | 3+t+4=10 | | 0.8a=0.75 | | 8x+4=4x=2 |

Equations solver categories